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ABSTRACT 

Advanced manufacturing applications in the nuclear industry have the potential to revolutionize nuclear 
design. While current engineering design objectives may be consistent with objectives from the past, such 
as those intended to minimize the fuel cost or to limit the maximum fuel temperature for a given power 
level, the possible geometries which can be considered as candidate designs have changed. Optimizations 
applied to current designs in nuclear engineering are limited by traditional geometric shapes that are easy 
to manufacture with traditional processes: slabs as fuel plates, cylinders as fuel rods, spheres as fuel 
pebbles, axis-aligned coolant channels, and more. Advanced manufacturing allows for an approach to the 
nuclear design problem with arbitrary geometries that can enable previously unrealized optimizations in 
performance and cost. This work explores the application of arbitrary geometry to the nuclear engineering 
design process. 
 
Without the usual constraints of conventionally manufacturable geometries, the design optimization 
process becomes less restrictive but more difficult. There are three major challenges to this change in the 
nuclear design paradigm.  

1. The first challenge is based on the compact mathematical representation of arbitrary geometry. 
How do we represent the shape of the design while maintaining the freedom to make any changes 
to the shape and keeping the number of control parameters low?   

2. The arbitrary geometry requires a high number of design parameters, making design optimization 
the second challenge.  

3. The third challenge is to develop the technical capability to perform multiphysics simulation of 
nuclear designs with arbitrary geometry. This challenge is more practical in nature. 

 
This work combines two software packages to perform multiphysics simulations of nuclear designs with 
arbitrary geometries. Two different approaches are used to compactly represent arbitrary geometry that 
can be manipulated and simulated. Finally, this work explores artificial intelligence (AI) and advanced 
methodologies to perform the optimization. The results are demonstrated on a series of five designs of 
increasing complexity. 
 
If advanced manufacturing techniques become widely used in the nuclear industry, then AI design of 
nuclear systems will significantly impact the field. While AI will not replace the human designer, the use 
of AI algorithms will shift the designer’s focus away from conjecturing good geometries to defining the 
design criteria and find optimal designs. In the five demonstration designs presented herein, the AI 
algorithm produced two results that initially seem counterintuitive to a human designer, but on further 
inspection, they have been deemed optimal. The exploration of these designs demonstrated how AI uses 
the physics of the problem to find optimal designs. 
 
The implementation of AI as discussed herein is beginning to demonstrate applicability to the difficult 
nuclear design problem. Large investments in computational modeling and simulation research do not 
solve this engineering design problem: computational modeling and simulation are applied to determine 
engineering performance characteristics of a particular design, but additional optimization approaches are 
required to make a better design. The AI algorithms implemented and demonstrated here can be applied 
to design optimization based on a given set of criteria, assisting designers in the determination of which 
qualities improve a design to best meet the desired objectives within given constraints.  Additional work 
is required to fully explore and demonstrate the application of AI and these tools to arbitrary reactor 
design, including to a commercial design concept, which would include real-world design constraints and 
objectives. 
  



 

2 

1. INTRODUCTION 

1.1 OBJECTIVE 

This project used artificial intelligence (AI) algorithms to explore how the freedom of geometry made 
possible with advanced manufacturing techniques changes the optimization of nuclear designs. In this 
initial effort, the goal was not to produce one optimal design for a given application, but rather to research 
and establish a framework for nuclear system design optimization that includes the types of arbitrary 
geometry enabled by advanced manufacturing. 
 
This report presents the framework found to be the best for nuclear optimization with arbitrary geometry. 
Two approaches were selected to represent the geometry, both of which are very flexible and conservative 
in the number of characterizing parameters. Multiple optimization approaches and their associated trade-
offs are discussed. Lastly, while it was not the explicit goal of this project to find optimal designs, the 
proposed framework was demonstrated on five design optimization scenarios of increasing complexity, as 
described herein. 
 
The primary objective was to propose a path forward for nuclear systems design in an arbitrary geometry 
framework, and the secondary objective was to understand the possibilities and limitations of the 
proposed framework and how it will impact nuclear design. 

1.2 LONG-TERM VISION AND IMPACT 

The long-term vision for this project is to develop the initial framework into a very general nuclear 
engineering design tool. One of the powerful aspects of the framework is the modular nature of the 
relationship between the multiphysics calculations, the geometry representation, and the optimization 
software. Therefore, it will be relatively straightforward to incorporate more physics modules into the 
performance evaluation of one candidate design. While the current framework only considers the 
neutronics, heat transfer, and fluid-dynamics associated with the candidate designs, structural mechanics, 
thermophysical fuel performance, economics, fuel cycle capabilities, etc. can easily be added without 
requiring many changes in either the geometry representation module or the optimization module. 
 
All of the modeling and simulation results evaluated relate specifically to the optimization module of the 
framework as either objectives or constraints. For example, the maximum fuel temperature may be a 
constraint on the design, while the mass of the fuel may be the minimization objective. Furthermore, any 
physical constraints from specific advanced manufacturing techniques are considered beneficial rather 
than detrimental, as they constrain the search space of possible solutions for the optimization module. 
 
In the long-term, the AI-based nuclear design capability will create a different role for the human 
designer: to clearly and quantitatively determine the objectives and constraints for the design, as these 
impact the resulting optimized design. While the constraints are usually more straightforward, defining a 
single quantitative objective is difficult. Possible design objectives for the longer term are listed in    
Table 1, many of which are quantifiable with modern modeling and simulation. However, the designer’s 
role will be to understand the balance between these objectives when defining a single quantitative 
objective function.  
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Table 1.  Possible long-term optimization objectives 

Economics Fuel cycle Reactor physics 
Construction costs Proliferation resistance Enrichment 

Operating costs Activation products Local peaking factors 
Front end fuel costs Waste Burnable poison 
Resource utilization Cycle length Thermal efficiency 

 
These goals could effect a change in computational reactor physics. So far, computational reactor physics 
has been focused on evaluating the performance of a single design. This project’s long-term objective is 
to develop solution methodology for finding optimal nuclear engineering designs given a set of 
performance characteristics. 

1.3 DOCUMENT LAYOUT 

This document is structured around the project’s three critical components. Section 2 identifies the 
constraints on Multiphysics Simulations chosen for initial demonstration, followed by implementation of 
the computational solvers for this problem. The near-term improvements to the multiphysics modeling are 
discussed, as well prospects for generalization beyond the initial proof of concept. Section 3 discusses the 
Geometry Representation. The important features of the geometry representation are presented, and the 
choices are considered, along with the advantages and disadvantages of the two selected representations. 
Section 4 presents the different Optimization approaches explored in this project, as well as their strengths 
and weaknesses. The roadmap for the follow-on optimization work is established. Figure 1 illustrates the 
connection between the three components and will be referenced further in the document. 
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Figure 1. Framework flow connecting the multiphysics modeling capability (Section 2)  

to the geometry (Section 3) and optimization (Section 4) capabilities. 

 
In this initial report of a new beginning in AI design for nuclear systems, all three sections include 
subsections that discuss the future work and potential for the three components: multiphysics, geometry, 
and optimization. 
 
Section 5 introduces the challenge problems of increasing difficulty that were used to study and 
demonstrate the proposed framework. Each challenge problem is centered around finding the optimal fuel 
geometry to meet a set of multiphysics constraints, with increasingly more relaxed geometrical 
constraints. As the geometrical constraints are relaxed, the complexity of the geometry representation 
increases, along with the complexity of the optimization space. 
 
The geometry determined by AI optimization for two of the challenge problems seemed counterintuitive. 
Section 5 provides an deep dive into the physics of these two challenge problems to elucidate (1) how the 
AI algorithm was able to determine those geometries as optimal, and (2) why the counterintuitive 
geometries outperform the human designs. 
 
The final section summarizes the proposed framework for AI optimization of nuclear systems divided into 
three timescales: near-, mid- and long-term outlooks. 
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2. MULTIPHYSICS SIMULATIONS 

2.1 PHYSICS PROBLEM SET UP 

Early in the project, the multiphysics definition of the optimization problem was established to mimic the 
requirements for the Transformational Challenge Reactor (TCR) core design at the time (the design has 
evolved since then), with a few modifications for simplification. While the multiphysics definition of the 
problem determines the final theoretical optimal design, the exact definition is not viewed as essential to 
establishing the AI optimization framework. The term theoretical optimal refers to the global optimal 
point in the design space from the mathematics perspective. In practice, the global optimal design is 
hardly ever found in anything more complicated than the most trivial optimization problems. Rather, a 
stable, deep, local minimum is sought. 
 
The exact multiphysics definition of the problem is not viewed as essential to the framework because the 
goal of this project was to develop a general framework which would define a method for performing AI 
optimization of nuclear systems that would apply to a wide range of objectives and constraints. Therefore, 
a set of multi-physics definitions was required for the study. Despite this, the prevailing goal was to 
develop a framework which would work just as well with a different set of multiphysics definitions. 
 
Using this approach, the team worked to simplify the multiphysics definitions as much as possible to 
reduce the complexity and run-time of the multiphysics calculations while preserving some physical 
intuition. In the future, all the simplifying assumptions made here can easily be removed. However, for 
now, they would only cloud the construction of the framework and would take time away from the 
geometry and optimization work. 
 
For the initial exploration of the framework and the challenge problems, the decision was made to 
optimize the geometry of a single piece of nuclear material which was modeled as suspended in the 
middle of a cylindrical shroud with forced coolant flowing from the bottom to the top (bottom-up). A 
schematic is provided in Figure 2. An important distinction is that the study was begun with the geometry 
optimization of the fuel piece only. This is computationally equivalent to determining the boundary 
between two materials: the fuel and the coolant. However, this differs from a three-material problem, such 
as one containing, fuel, moderator, and coolant. Future work to optimize the geometry of multiple 
materials is discussed in Section 3. 

 
Figure 2. Schematic representation of the problem. Optimization is performed over the geometry of a single 

continuous piece of fuel suspended inside a shroud with bottom-up forced coolant flow. 

 
The material definitions for the fuel and the coolant were fixed to the values in Table 2. All the fuel 
properties were taken to be temperature-independent for simplicity. 
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Table 2. Material properties for the fuel and the coolant used in the challenge problems. 

Fuel: UO2 Coolant: He 
Enrichment 19.75% Inlet pressure 6 MPa 
Density 10.8 g/cc Inlet flow velocity 10 m/s 
Thermal conductivity 4 W/mK Inlet temperature 425 °C 

 
The multiphysics constraints on the design were as follows: 

1. neutron multiplication of 1.020 ± 500 pcm, 
2. maximum fuel temperature of 600 °C ± 3%, and 
3. design power of 10 kW ± 3%.  

 
In this work, only the steady-state problem is solved.  While 2000 pcm above critical is a lot, it should be 
viewed more as an arbitrary design goal.  In this case we justify it by deferring reactivity control to later 
engineering solutions or optimization using more detailed multiphysics modeling. This is also a good 
example of a TCR-specific design objective that is arbitrary for this demonstration. For a real, 
commercial design in which the reactor would be generating power over an extended period of time, 
excess reactivity and its control would be a constraint and potential design objective e.g., longer cycles. 
 
For this project, the design power was significantly reduced from the TCR design because the study was 
limited to a single piece of fuel instead of a fuel array. 
 
The design objective was to minimize the fuel volume (i.e., mass, as the density was fixed). Nuclear 
engineering intuition dictates that the goal of minimizing the fuel volume with a constant component 
power will push any near-optimal design to the minimum allowed neutron multiplication and to the 
maximum fuel temperature. Therefore, constraints 1 and 2 were reformulated as a multiplication factor 
above 1.015 and a maximum fuel temperature below 618 °C, taking into account the allowable tolerances. 
 
It was verified that in the multiphysics regime used for optimization in this effort, the fuel density changes 
are negligible with respect to both reactivity and fuel temperature. Furthermore, the temperature feedback 
coefficient for criticality is within the uncertainty of ± 500 pcm for temperatures of up to 925 °C.  While 
we do not neglect to Doppler broaden the cross sections to the average operating temperatures, we do 
neglect the effect of Doppler reactivity feedback.  That is, only solve the neutron transport problem once 
at mean temperatures. Similarly, all changes in thermophysical properties (e.g., thermal conductivity) due 
to irradiation are ignored due to the very short irradiation time assumed for TCR. 
 
Photon transport was noted for heating calculations as well as neutron and photon heating in the coolant,  
but it was neglected as appropriate for the flow characteristics.  
 
With approximations taken into account, only a pseudo-coupled neutronic/thermal-hydraulic problem was 
solved. The component power level to was fixed to 10 kW, regardless of the criticality or fuel geometry, 
the relative power distribution was passed to the thermal-hydraulics solver. This is considered pseudo-
coupling because it is only one-way. For this set of challenge problems, only the impact of the power 
distribution on the temperature distribution is considered, with no feedback to the neutronics solve from 
the thermal-hydraulics. This is justified by the calculations of negligible temperature feedback in the 
operating regime. 
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2.2 CURRENT APPROACH FOR MULTIPHYSICS SIMULATIONS 

State-of-the-art modeling and simulation codes used in the nuclear research community were used to 
model the physics described in the previous section. A coupling methodology was developed between the 
neutron transport code Shift (Pandya, et al., 2016) and Star CCM+ (Osher & Fedkiw, 2002; Sethian, 
1999). However, to enable rapid development and testing of the framework, a low-fidelity surrogate 
model was developed which was found to be accurate to within several percent of the high-fidelity model, 
which is not sufficient for true design analysis but is sufficient to demonstrate these approaches. The 
surrogate model is below, followed by the full physics model. 

2.2.1 Low Fidelity (Surrogate) Physics Model 

The coupling of the neutron transport and the thermal-hydraulics in the surrogate model was 
accomplished the same way as in the high-fidelity model: the relative power density was passed from the 
neutron transport solve to the thermal-hydraulics solve. The solution for both the neutron transport and 
the thermal hydraulics was calculated only on the fuel for the surrogate model. 
 
The neutron transport surrogate model is a one-group neutron diffusion model with zero flux boundary 
conditions. The one group constants were determined to match the infinite homogeneous medium 
multiplication factor of 1.51723 and a critical sphere radius of 35.78 cm. Zero boundary conditions for 
non–re-entrant boundaries were taken for simplicity, and the coolant in between the re-entrant surfaces 
was modeled with zero absorption and a large diffusion coefficient.  
 
The thermal hydraulics surrogate model was a heat-diffusion model with the fuel thermal conductivity 
from Table 2. The total component power was normalized to 10 kW, and fixed temperature boundary 
conditions of 425 °C were assumed. 
 
As crude as the physics approximations were for the surrogate model, the use of the surrogate model 
proved to be extremely valuable for rapid prototyping of the AI algorithms. For the multiphysics regime, 
which is defined in Section 2.1, the surrogate model was found to be easy to use and accurate to within a 
couple of percent compared to the full-fidelity physics solve described in the following subsection. This 
physics-informed surrogate model is expected to perform better than most surrogate models. This could 
be tested using machine-learning techniques. The surrogate model can be solved efficiently using 
standard solvers in commercial software such as MATLAB. 

2.2.2 High Fidelity (Full) Physics Model 

Python and java scripts have been written to automate the process shown in Figure 1. The optimization 
module will produce a set of parameters characterizing the geometry, and the geometry module will 
produce input files for the two physics simulators. On the order of d2 number of candidate designs are 
evaluated simultaneously, where d is the number of parameters defining the geometry. 
 
The ORNL-developed Shift Monte Carlo radiation transport code (Pandya, et al., 2016) is used for the 
neutronics solve to leverage its ideal scaling characteristics. The Shift code then produces the 
multiplication factor and a core fission tally distribution. These tallies are converted into power densities 
and normalized so that the total core power is 10 kW. The power density distribution is then read into a 
Java code which builds and meshes the geometry and runs the thermal hydraulics code Star CCM+ on 
each core. Star CCM+ returns the maximum temperature of each candidate design. Then the maximum 
temperature and multiplication factor (keff) is fed back into the optimization module. The optimization 
module proposes a new set of candidate designs. This process is repeated until a converged design is 
achieved. 
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In view of the diverse geometry configurations of the optimized designs, an accurate prediction of 
temperature distribution in the core component is necessary. It is important that the thermal-hydraulic 
model is capable of computing a conjugate (solid-fluid) heat transfer in arbitrary geometry shapes. To 
achieve this, a computational fluid dynamics (CFD) approach is taken. This method allows complex 
surfaces to be discretized with finite volume techniques, and it also allows the interface between the solid 
structure and the coolant (gas in this case) to be properly defined. On the solid side, a thermal diffusion of 
heat with a volumetric heat source is computed to determine the temperature distribution. The heat 
generated by nuclear fission is deposited in the core element according to the volumetric power 
distribution supplied by the reactor physics calculation. 
 
On the fluid side, a Reynolds averaging of the velocity vector field is employed within the finite volume 
formulation. Since the assumed flow is highly turbulent, a two-equation model of turbulence is used 
(renormalized k-epsilon). The near-wall velocity field is resolved with the two-layer all wye (Y) plus 
method. All these models provide an accurate prediction of the wall heat transfer, which is critical for the 
proper resolution of core component temperature field. 
 
To model the geometry variation necessary for running the suite of optimization codes, two approaches 
are taken. The first approach relies on using a geometry parametrization method. Within the CFD 
computation, the geometry is regenerated automatically every time a new combination of parameters is 
tried. The software that was used allows for modification of computational domain—both geometry and 
discretization—without user intervention. This reduces the runtime per single sample down to several (8–
10) minutes in parallel on 4–8 compute cores. 
 
The second approach is based on importing a CAD file containing the geometry of the core element. In 
this case, the parametrization is not necessary, and the thermal computation relies on a predefined 
geometry configuration. This saves time for defining and setting up parameters, but it requires the 
candidate geometry to be composed of a single continuous surface. Both approaches are fully integrable 
in an autonomous workflow within the entire optimization suite. 

2.3 FUTURE DEVELOPMENT FOR MULTIPHYSICS SIMULATIONS 

The multiphysics modeling component of this project only defines the landscape in which the 
optimization is performed. Therefore, the general direction for future development of this project’s 
multiphysics modeling component is to explore and understand how different physics assumptions, 
approximations, constraints, and goals change and challenge the design process. For clarity, a brief 
discussion is provided below describing how four different categories of changes to the multiphysics 
modeling could impact the optimization of design. 

2.3.1 Problem Definition 

It is worthwhile to explore and test the framework for AI optimization of nuclear design established in 
this document on a vastly different problem definition in nuclear design. This will evaluate the robustness 
of the approach. To distinguish from the following subsections, the problem definitions for all five of the 
challenge problems are summarized in Figure 2. This project optimizes one continuous piece of fuel in 
bottom-up forced coolant flow. A change in the problem definition could be to optimize a finite array of 
identical fuel pieces which interact in their neutronics and thermal hydraulics. Another alternative might 
be to optimize one component of a reactor design with respect to a fixed design for the rest of the reactor. 
In the latter problem definition, the remainder of the reactor design would provide the boundary 
conditions for the optimization. 
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One near-term change in the problem definition which will be explored is the optimization of nuclear 
design with multiple materials. This study only defines the boundary of the fuel, which is alternatively 
viewed as the boundary between the fuel and the coolant. Optimizing a critical nuclear design operating 
with a thermal neutron spectrum that depends on a fuel material, a moderator material, and a distinct 
coolant material (e.g., a gas-cooled, graphite-moderated reactor) will present new challenges to the way 
the geometry is represented. Another interesting example is to present the AI optimization with a choice 
of several coolant or moderating materials and to allow the algorithm to determine the combination of 
materials that optimizes performance. 

2.3.2 Assumptions, Approximations and Physics Fidelity 

Higher fidelity physics will be required to produce designs for which the simulated performance matches 
actual performance. The major stress on the proposed framework from an improvement in the fidelity of 
the multiphysics simulation will likely be the need for significantly longer run-time to evaluate candidate 
designs. This will require even better AI optimization algorithms to reduce the number of candidate 
designs that must be evaluated. 
 
Upon removing some of the assumptions and approximations made to simplify the physics, the increasing 
run-time can be combated through multiresolution physics modeling. The idea behind multiresolution 
physics modeling is that full physics models are not initially required to get an idea of design 
performance. For the initial scoping study, the surrogate model (or some more advanced form of it) can 
be used. Furthermore, as the AI algorithm advances the design toward more optimal performance, low-
fidelity versions of the full-physics codes can be used. Some examples are Monte Carlo neutron transport 
calculations with less particles and less-converged thermal-hydraulics solves. The trade-off between the 
speed and accuracy of the multiphysics calculations will be explored to determine the best approach. 
 
Some of the geometry configurations explored, such as the truncated cone shown in Figure 3, produce 
complex velocity fields in the assumed cooling conditions. In Figure 3, this blunted cone (truncated cone 
with large frontal area) creates large flow detachment at the leading edge, resulting in an eddy that reflects 
from the shroud walls and affects the heat transfer on the side surfaces. For such rotating flows, the 
applied turbulence model may not be fully adequate, and the computed heat transfer coefficients may 
require reevaluation using higher order methods and/or model validation against experimental data. 
Increasing the boundary layer resolution and employing large eddy turbulence simulations are some of the 
conceivable methods. Case studies will be conducted to confirm and tailor the turbulence model 
coefficients. These methods will no likely be practical for production calculations due to their large 
consumption of computational resources, and their application will be limited to confirmatory analyses. 
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Figure 3. Velocity contours around a blunted truncated cone fuel element. 

 
The CFD model developed for this project relies on numerical methods (temporal and spatial 
discretization) and physical models (turbulent flow, conjugate heat transfer, etc.) to predict the 
temperature and flow distribution in the geometry of interest. The inherent assumptions of these methods 
and models must be quantified to ensure correctness and accuracy of the CFD results. A common 
example in the CFD community is a grid refinement study which consists of performing the same CFD 
analysis on successive meshes of increasing density to investigate the induced changes in output 
parameters of interest (Eca & Hoekstra, 2014). To relate to the current study, a mesh sensitivity analysis 
could be performed on the maximum temperature in the fuel to show that the numerical uncertainty is 
within acceptable ranges. Further sensitivity analyses can also be performed on the turbulent model and 
the material properties, among others. Such sensitivity analyses will help quantify the thermal-hydraulics 
uncertainty of the CFD model and will provide reliable CFD results for optimization problems. 

2.3.3 Constraints 

In one respect, additional constraints on the design make the optimization problem easier to solve, as they 
can reduce the size of the search space. On the other hand, the challenge is in determining which regions 
of the search space are cut off by the additional constraints. Two high-priority constraints to add are 
limitations coming from particular advanced manufacturing techniques and limitations from structural 
mechanics. Limitations from both of these sources will cut off regions of the search space where 
candidate designs propose pieces that are too thin/narrow. While the need for lower maximum fuel 
temperature drives the designs to look like traditional heat transfer “fins,” limitations from manufacturing 
and load bearing will push back on exceedingly unmanufacturable geometries. 

2.3.4 Objectives 

The objective established for the challenge problems is to minimize the fuel volume for the given problem 
definition and multiphysics constraints. An alternative objective might be to maximize the component 
power for a given fuel volume. 
 
Overall, this framework was focused on single objective optimization. The optimization framework that 
can respond to a general category of quantitative objective functions is considered a valuable 
contribution. However, definition of the quantitative objective function will then become the major task 
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for the human engineer. Two of the challenge problems have shown how the AI algorithm finds the 
optimal solution exactly for the objective function defined, raising the question of whether the solution is 
for the problem that the team wanted to solve. 
 

3. GEOMETRY REPRESENTATION 

3.1 GEOMETRY REPRESENTATION CONSIDERATIONS 

There are two major challenges with geometry representation for nuclear systems design. The first is 
preserving the flexibility to represent a wide variety of geometrical configurations, referred to here as 
arbitrary geometry. The second major challenge (and the opposing force) is to minimize the number of 
parameters which control the geometry to reduce the search space for the optimization algorithm. 
Furthermore, the changes in the geometry should be smooth with respect to changes in the controlling 
parameters in order to simplify the optimization. 
 
One challenge which appears with geometry optimization for the multiphysics problem defined here is the 
formation of holes. From the mathematical subject of topology, there is a strict distinction between 
objects with different numbers of holes (technically referred to as orientable surfaces with genus n, where 
n represents the number of holes). Figure 4 provides several examples. The key distinction between 
objects of different genera is that they cannot be transformed into one another through a continuous 
deformation of the surface. For example, the surface of a sphere can be continuously deformed into a 
cube, but it cannot be deformed into a torus without introducing a hole. In the context of some more 
familiar nuclear designs, the nuclear fuel pellet is a continuous deformation of the sphere, while the 
cladding without end caps is a continuous deformation of the torus with one hole. A water moderator 
around a single fuel rod can also be viewed as a continuous deformation of the torus with one hole. A fuel 
spacer grid in a pressurized water reactor can be viewed as continuous deformation of a torus with 17 × 
17 = 289 holes. In a simplified manner, all real components in nuclear engineering map directly to a 
unique object in the series started as shown in Figure 4 through a continuous deformation of the surface. 
 
In the subject application, which has bottom-up coolant flow, introducing holes into the geometry 
drastically changes the cooling characteristics and the maximum fuel temperature of the design. The 
introduction of holes will likely produce discontinuity in the multiphysics solutions for a wide range of 
nuclear applications. Therefore, this section addresses continuous surface deformation and the 
introduction of holes into the prospective design. 
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Figure 4. Topological objects of different genera. https://en.wikipedia.org/wiki/Genus_(mathematics) 

 
The 2013 article by Sigmund and Maute (Sigmund & Maute, 2013) outlines the most promising 
approaches to geometry representation in the field of topology optimization in applied mathematics. After 
careful consideration of each approach, a surface-control-point approach for continuous surface 
deformation and was selected, along with level-sets for opening and closing of holes. These two 
approaches and their application to nuclear design will be discussed in the next subsection. 
 
The density approach was discarded, as it basically pixelates the geometry of the design and searches for 
the pixels that should contain fuel material and those that would contain the coolant material. The main 
reason for this decision was that the team could not find a way to restrict the number of fuel pieces in this 
representation. For example, a pixel of fuel could be generated away from the main geometry in the 
middle of the coolant field. Furthermore, in this representation, the team could not determine how to 
ensure that hole formation would happen continuously throughout the geometry and open up a new 
coolant channel as opposed to forming enclosed voids in the middle of the fuel without access for the 
coolant flow. 
 
Furthermore, it is important to note that, unlike applications to topology optimization in other engineering 
disciplines, there will be no access to surface derivatives. For example, there is no way to directly (other 
than by finite-difference) calculate the change in the maximum fuel temperature as an infinitesimal 
perturbation on the geometry of the fuel is made. Looking forward to creating a framework for a wide 
variety of nuclear engineering applications, the team designed this algorithm based on the assumption that 
such derivatives will not generally be available. 

3.2 GEOMETRY DEFINITION 

One standard in design optimization is to define curves by interpolation through a set number of control 
points (Gero, 1985). By manipulating the number and position of the control points, many possible 
surfaces can be described by a relatively small number of degrees of freedom. In this study, both linear 
and spline interpolation were used to describe a 2D surface that could be extended to 3D by assuming 
either z-axis symmetry to produce a rod type geometry or rotational symmetry to produce a torus type 
geometry. Control point geometry represents the next advancement step, as compared to geometric 
parameter optimization, where a set of parameters control the surface shape. 
 
Level sets methods are a class of tools for locating and tracking surfaces. In the context of the current 
project, these surfaces form the interface between different materials, including voids. The key 
component of the method is the level set function f. Interfaces are the surfaces on which f is a fixed 
constant. These interfaces are often chosen to be zero by convention. For example, in two dimensions, 
interfaces may be defined as the set of all points (x,y) such that f(x,y) = 0. In the context of shape 
optimization, a level set function is sought that optimizes a certain objective.  
 
To approximate level sets numerically, one must introduce a parameterization of the function f via the 
introduction of a computational grid or by an approximation in terms of global basis functions such as 
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polynomials, Gaussians, or trigonometric functions. In either case, the parameters of the representation 
form the space over which an optimization algorithm must be implemented. 

3.3 GEOMETRY REPRESENTATION ADVANTAGES/DISADVANTAGES 

The main advantage of control point optimization is that the range of possible shapes that can be 
described by control points is large compared to the number of control points used. Therefore, it is 
possible to effectively search over a large range of surface shapes by sampling over a few degrees of 
freedom. However, with the current implementation in 2D, only extensions along some axis of symmetry 
can produce 3D surfaces. In this implementation, shapes are either rod- or torus-like in one axis of 
symmetry. More complicated shapes cannot be represented with the structural ease possible with using 
level-sets to define surface meshes. 
 
Level sets are relatively easy to implement, can be generalized to arbitrary dimensions, and naturally 
incorporate the separation and merging of interfaces. However, the equation that defines the evolution of 
the level-set function f depends on the specification of the interface velocity. In the context of shape 
optimization, this velocity is tied to the gradient of the objective in the shape optimization problem. For 
the current project, estimating this gradient requires many samples of an expensive, high-fidelity code. An 
alternative approach currently being pursued is to approximate (see Subsection 3.2 above) the level set 
function with a parameterized expansion of global basis functions and optimize over the parameters. Such 
an approach requires fewer high-fidelity samples and can be used in conjunction with less expensive 
surrogate models. While this approach can represent very complex interfaces, it cannot represent arbitrary 
fine scale structures like a grid without a large number of parameters. In addition, some logic must be 
introduced in the optimization procedure that forbids parameterization that leads to non-physical or non-
practical structures, such as freely suspended materials or material that is locally too thin to be structurally 
stable. 

3.4 FUTURE DEVELOPMENT FOR GEOMETRY REPRESENTATION 

In general, control points should be used as an intermediary method between geometric shape 
optimization and level-set optimization. The degrees of freedom, and hence the total cost of optimization, 
are an order of magnitude smaller than level-sets. Future development of 3D control points can shorten 
the bridge between level-set and control point optimization. The first step would be to parameterize the 
symmetry axis for the 2D control point method and to allow some feature (such as parameter size or 
rotation angle) to vary throughout the original symmetry axis. With a few additions to the size of the 
degrees of freedom occurring from the parameterization of the symmetry axis, completely different 
surfaces that could optimize fluid flow can be tested. Similarly, a set number of channels can be 
introduced to linearly increase the degrees of freedom while exploring porous candidate designs. Modest 
adjustments to the current control point method can be extended to bridge a significant region of design 
space that exist between geometric shape optimization and level-set optimization. (It is possible to 
generate a quick picture of a 3D control point assembly with a few internal cooling channels that vary as a 
function of the coolant-flow-axis). 
 
In the level set context, multiple materials can be handled using multiple level set functions. Specifically, 
m level set functions can account for as many as 2m different materials. However, for structural reasons 
such as cladding around a fuel, the relative geometries of different materials may need to be coupled 
together in a more direct fashion. The major challenge of level sets in three dimensions is the increased 
computational complexity relative to two-dimensional problems. However, structural restrictions may 
also be more complicated to express and enforce in three dimensions. In addition, restrictions on the 
geometry may be required that are not present in two dimensions. 
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4. OPTIMIZATION 

4.1 OPTIMIZATION APPROACHES 

The statistics community has expended considerable effort developing emulators that can approximate 
functional forms given uncertain data (Higdon, Kennedy, Cavendish, Cafeo, & Ryne, 2004) (Kenned & 
O'Hagan, 2001). Gaussian processes (GPs) are the preferred methods for approximating both the mean 
field and covariance processes from arbitrary pointwise values under the assumption that the values are 
independently identically distributed N(0,σ2 ) random variables (Rasmussen & Williams, 2005). These 
GP approximation methods can be used with the optimization data to approximate the global optimization 
surface given a limited sampling of the full optimization surface. The team has developed a method that 
statistically determines the next set of samples to be simulated. This is likely to minimize a given loss 
function and should maintain any set of constraints given all the available simulations that have been run. 
This method grows in accuracy as more samples are simulated. For the case of optimization of the 
annulus challenge problem (Subsection 5.3), GP optimization was able to determine a near optimal 
solution in a couple of hundred samples in total. 
 
The pattern search (also known as direct search) method (Kolda, Lewis, & Torczon, 2008) (Audet & 
Dennis, 2002) was applied for solving this topological optimization problem. Pattern search is a class of 
derivative-free optimization methods that determines the search direction by probing objective function 
values at sample points in the optimization domain. To incorporate the multiphysics constraints, they are 
built into the objective function as penalty terms. In the optimization procedure, the GP approximation is 
used to estimate the criticality and maximum temperature at a given point in the optimization domain; this 
avoids the prohibitive computational cost of extensive multiphysics simulations. 
 
The pattern search method used here consists of two stages: a global random search and a local refined 
search. The global search stage randomly samples search points that are further away from the current 
location to explore the optimization domain, while the local search procedure probes adjacent points to 
guarantee convergence to local minimums. Full multiphysics simulations are then run on the convergent 
points, and the GP approximation is updated with the simulation results. Then a new iteration of pattern 
search is started. 

4.1.1 Genetic Algorithms 

Genetic algorithms are optimization techniques that borrow ideas from the natural world, including 
mutation, breeding (crossover), and survival of the fittest. Like in the natural world, in a genetic 
algorithm, unique individuals are compared according to a set of criteria and are combined to create new, 
unique individuals. These are then added to the population, and the best are again selected and combined. 
While the general outline of the algorithm is simple, the execution can be complex. This is due to having 
to explore potentially complex ideas such as how individuals should be judged, how individuals should be 
created and mutated, and how heuristics can be imposed to reduce unnecessary computation. This has 
been explored by starting with simple geometries of solid spheres and cylinders and solved for neutron 
multiplication using the relatively quick but least accurate 1-dimensional diffusion equations. By using 
simple, quick methods to evaluate the fitness of individuals, other important parameters related to the task 
were explored, such as mutation rates and varying crossover methods. These studies were built upon 
further by switching to a more accurate discrete ordinates method for solving for criticality and 
temperature and adding the annulus geometry type. 
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4.2 FUTURE DEVELOPMENT FOR OPTIMIZATION 

Future developments will focus on three topics: improved optimization algorithms (Subsection 4.2.1), 
faster evaluation of the function to be optimized (Subsection 4.2.2), and genetic algorithms (Subsection 
4.2.3). 

4.2.1 Optimization Algorithms 

Currently, the optimization is based on a pattern search algorithm (Torczon, 1997). The reason for this 
choice is that most topology optimization problems are based on objectives that require expensive 
simulations, making gradient approximations difficult. In the current problem, the objective is the volume 
of the fuel, which is easily computable; the expensive simulation comes from computation of the 
constraints based on temperature and criticality. These constraints can be approximated using surrogate 
models based on a relatively small number of samples of a simulation code, allowing for a local gradient 
calculation. 

4.2.2 Function Evaluation 

Optimization in high dimensions invariably requires a large number of samples. Thus, in order to reduce 
the total sampling cost, cheaper surrogate models for function approximation will be developed; this will 
be done specifically for the constraints which are determined by neutronic and thermal hydraulic 
simulations. Currently, two surrogates are used: the Gaussian process model is a data-based model, and 
the reduced-order simulation is a physics-based surrogate. Other data models (such as neural networks) 
will be explored, as well as other physics-based surrogates and numerical surrogates which reduce cost 
using coarse grid resolution. In addition, these approaches will be combined into multi-level (Giles, 2008) 
and multi-fidelity approximations (Peherstorfer, Willcox, & Gunzberger, 2018) to maximize overall 
model fidelity for a given computational budget. 

4.2.3 Genetic Algorithms 

Work is ongoing to increase the robustness of the genetic algorithm code so that more complex 
geometries can be studied. A drawback to genetic algorithms is that as the individuals being optimized 
become more complex as the number of individuals evaluated increases. This increase in complexity can 
be countered with more effective mutation, crossover, and fitness operators that are more specifically 
tailored to the problem, including the use of more advanced machine learning techniques such as 
reinforcement and learning. 
 

5. OPTIMAL GEOMETRY RESULTS 

5.1 INTRODUCTION TO THE CHALLENGE PROBLEMS 

The challenge problems described in the following subsections were designed to be progressively more 
difficult to gradually challenge the team’s ability to: 

1. represent increasingly more arbitrary geometry, 
2. perform reliable multiphysics calculations, and 
3. perform optimization over an increasing number of free parameters. 

 
The other considerations in the design of the challenge problems were reasonable expectations of the 
existence of a global optimum (or a deep and stable local optimum) and the possibility of cross-validation 
between the challenge problems. 
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In establishing an AI framework for nuclear systems design, for the human engineer, the burden will shift 
towards defining the objective for the optimization well. It was important to use engineering judgement to 
create the challenge problems to eliminate the possibility of trivial solutions being optimal. For example, 
the case of simply asking to minimize the mass of a critical cylinder of fuel has a well-known solution 
from neutron diffusion theory. However, the AI solution to a slight modification of this simple problem 
was unexpected, as described in the following subsection. Another so-called “trivial” solution which had 
to be avoided was the optimal solution becoming fractal-like in nature to optimize cooling. A heat-
transfer, fin-like solution becomes optimal for minimizing peak fuel temperatures. For many applications, 
this is not practical because of structural or manufacturing constraints. 
 
In the following subsections, the critical sphere radius for the material definitions is 0.358 m, which 
corresponds to a volume of 0.192 m3 and a surface area of 1.6 m2. The infinite homogeneous 
multiplication factor is 1.51, and the maximum allowable fuel temperature was 618 °C. 

5.2 CYLINDER CORE 

The first step was to restrict the geometry to a right-cylinder. This geometry is far from arbitrary and is 
described by two free parameters; radius (R) and height (H). As for all the challenge problems, the goal 
was to minimize the fuel volume while maintaining a neutron multiplication factor above 1.015 and a 
maximum fuel temperature below 618 °C. The cylinder is positioned in a shroud with bottom-up coolant 
flow, as described above. 
 
The goal of this challenge problem was to start with a simple problem, which allowed the team to: 

• Exercise each of the multiphysics modeling modules, 
• Establish the neutronics/thermal-hydraulics coupling, 
• Compare the surrogate physics model to the full-physics model, and 
• Get started on the optimization module with only two free parameters. 

 
Furthermore, the cylinder core set up a reference for cross-validation of the multiphysics modeling of the 
Star Core in Subsection 5.5 and the Level-Sets Core in Subsection 5.55.6. 
 
The AI solution to the cylinder core also provided the first non-intuitive solution. By restricting the 
geometry to a right-cylinder, one of three possible solutions was expected to be optimal: (1) a flat disk 
like a coin, (2) a compact cylinder with an R/H ratio near 0.5, like an LWR fuel pellet, or (3) a long, thin 
cylinder like a fuel rod. The AI optimization found two near-equivalent solutions to the posed problem 
that were disjoint. The two solutions (within two significant figures) were combinations of R = 0.67 m, H 
= 0.37 m and R = 0.27 m, H = 2.3 m. These are the only two solutions, and no solution exists in between. 
Figure 5 gives a visualization of the two solutions. 
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Figure 5. Visualization of two equivalent solutions for the cylinder core. Full geometry (quarter symmetry) is 
shown on left of each respective solution, and the CFD solution is on the right. The power density distribution 

is inserted in the CFD plot on the left. Left: R = 0.67 m, H = 0.37 m. Right: R = 0.27 m, H = 2.3 m 

Although it was not intuitively anticipated at first, the reasoning behind the two AI solutions was soon 
apparent. In this case, a multiphysics problem involving criticality and heat transfer is being solved. 
Criticality can be viewed, in a simplified manner, as the balance between fuel volume, which increases 
criticality, and neutron leakage (non-reentrant surface area) which decreases criticality. For heat transfer, 
the same two meta-parameters play a role, but in the opposing direction (as this study is trying to 
minimize the maximum fuel temperature). Fuel volume increases the maximum fuel temperature, and 
surface area decreases the maximum fuel temperature. Both of the solutions found by the AI had nearly 
the same volume of 0.52 m3 and the same surface area of 4.4 m2. On the other hand, in the subsequent 
challenge problems, no degenerate optimal solutions were found, even for geometries with equivalent 
surface-to-volume ratios as more complex neutronics, thermo-dynamic, and fluid flow considerations 
come into play. 

5.3 ANNULUS CORE 

The annulus core addressed the same problem formulation as before, but it allowed for the geometry to be 
parameterized by three free parameters: radius of the inner cylindrical flow channel, the outer radius of 
the fuel annulus, and the height of the fuel. The annulus core presented several new challenges: 

• In both the surrogate model and the full multiphysics simulations, the reentrant geometry of the 
inner, cylindrical cooling channel had to be addressed. 

• The optimization space increased to three degrees of freedom. 
• The two radii parameters had to be restricted so that the inner radius was strictly smaller than the 

outer radius. 
• This allowed for experimenting with the dramatic change in performance that results from 

introducing a hole in the design 
 
With respect to the discussion in Subsection 3.1, the cylinder core has no holes and can be continuously 
deformed into a sphere, while an annulus core has one hole and can be continuously deformed into a 
torus. 
 
The AI optimization found the optimal design to be an annulus with an inner cooling channel radius of 
0.057 m, an outer fuel radius of 0.34, m and a fuel height of 0.70 m. In this case, the volume was 0.25 m3, 
a reduction of over 50% from the cylinder core (due to reduced neutron leakage) and only 30% above the 
minimum volume to maintain criticality at any maximum fuel temperature. The surface area for this 
design was 2.5 m2. Figure 6 shows the relative proportions of the optimal annulus core. 
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Figure 6. Relative proportions of the optimal annulus core: geometry (left), and CFD results (right). 

5.4 CONE CORE 

The cone core is the first design in the series of challenge problems to diverge from traditionally 
manufacturable geometries and to seek out improved performance by considering simple shapes which 
could easily be made with advanced manufacturing but are difficult to manufacture using traditional 
methods. The cone core was a variant of the annulus core, and the inlet and outlet radii for both the inner 
cooling channel and the outer fuel radius could vary independently. The cone core presented a new set of 
challenges: 

• The optimization space has increased to 5 free parameters: inlet inner radius, inlet outer radius, 
outlet inner radius, outlet outer radius, and height. The respective radii also had to be restricted. 

• This was the first design to really challenge the fluid dynamics aspect of the calculations. As the 
cone core either became tapered into the flow or blunted, the fluid dynamics changed. 

• As the surrogate model did not include a fluid dynamics approximation, it could not be used for 
the scoping studies. 

 
Some possible candidate geometries are presented in Figure 7.  Figure 7 visually presents only the effect 
on the outside of the geometry.  The cone core is a variant of the annulus core where the outside of the 
fuel had the freedom to be tapered into the bottom-up coolant flow or blunted.  The internal flow channel 
also had the freedom to either constrict the cooling channel or expand from the bottom to the top. 
  



 

19 

 

Figure 7: Candidate designs for the cone core.  Showing the tapering of the outside of the geometry (top 4 
figures) and the blunting of the outside of the geometry (bottom 4 figures). 

 
The AI optimization found that the optimal design had an inlet inner radius of 0.07 m, an inlet outer 
radius of 0.37 m, an outlet inner radius of 0.05 m, an outlet outer radius of 0.35 m, and a height of 0.64 m. 
 
The cone core was the second unintuitive result that the AI algorithm provided. As this was the first 
experience trying to optimize the flow around the fuel piece, an answer was expected which would taper 
the nose (inlet) of the cone core to smooth out the flow. This expectation was the opposite of what the AI 
found to be optimal. 
 
The optimal cone-like core configuration is in the geometry shape of a truncated annular cone, with the 
inlet surface being larger than the outlet (blunt body). A more detailed analysis was performed to confirm 
the correctness of the optimization algorithm by analyzing the cooling efficiency of the optimal geometry. 
Two options are considered when the element geometry varies in a way that leads to tapering (option one) 
or blunting (option two) the element.  
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Figure 8 Variation of cone geometry side surfaces and overall heat transfer coefficient (HTC)  
in function of total surface area for the case of tapering the core element. 

 

 
Figure 9  By surface heat transfer coefficients (HTC) for the blunt core  

configuration showing the improvement of cooling efficiency. 

 
Results are summarized in Figure 8 and Figure 9. Figure 8 shows the variation of the surface areas and the 
overall increase of the total area, when, during the optimization search, the element shape changes from a 
regular annulus to a truncated cone. Figure 9 demonstrates the outperformance of the blunted 
configuration, thus confirming the correctness of the optimization algorithm. The total heat transfer 
coefficient (HTC) increases by about 30%; this is mainly caused by the enhancement of the frontal and 
side surface cooling efficiency. Future analyses will continue to confirm and improve the model accuracy 
for proper heat transfer prediction. 
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5.5 STAR CORE 

The star core is the first arbitrary geometry core that is no longer confined to circles perpendicular to the 
direction of flow. In general, only two restrictions have been placed on the geometry of the star core. The 
first is that the star core is uniform in cross section in the axial (flow) direction. The second is that the star 
core is not allowed to have any holes or internal coolant channels. These two restrictions make it 
necessary to optimize the perimeter of the cross section of the fuel piece perpendicular to the direction of 
the coolant flow. The height of the fuel can also be varied.  A candidate design is presented in Figure 10. 
 

 
Figure 10: A candidate design for the Star Core. 

 
The star core is a very challenging geometry because it is so free in what it can do. In fact, engineering 
intuition holds that the optimal geometry for the restrictions on the star core would be some fractal pattern 
which would present infinite cooling surface area to reduce the maximum fuel temperature but would curl 
the geometry so that the surface area would present the possibilities for neutrons to re-enter the fuel 
geometry and maintain criticality. This should be pictured as some cylinder-like shape made up of 
infinitely thin sheets that allow coolant flow to pass through. Such a solution is obviously not practical 
once manufacturing and structural considerations are added into the multiphysics constraints. 
 
To maintain the current multiphysics modeling capabilities relevant, the fixed surface area constraint has 
been added. This constraint translates into a very interesting, practical question in thermal-hydraulics: 
given a fixed surface area, what is the optimal geometry for cooling: With unrestricted an surface area, 
the sphere (smallest surface-to-volume ratio) is known to be the least optimal geometry for cooling, and 
the fin/fractal solution is the most optimal (infinite surface to volume ratio). However, the geometries that 
lie in between are unknown. Therefore, the solution is sought for the star core with the minimal fuel 
volume for a fixed surface area of 6 m2. 
 
With the surface area of the fuel fixed, it was anticipated that the optimization would also be convergent 
with an increasing number of control points. That is, the shape of the cross section with a smaller number 
of control points would be a rough approximation of the shape with a larger number of control points. 
This convergence was expected to occur only after some (to be determined) number of control points. 
Increasing the number of control points beyond this amount would yield diminishing returns. 
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5.6 LEVEL-SETS CORE 

The level sets core was the most flexible geometry solution. In this challenge problem, the only restriction 
imposed was that of the axially uniform cross section, along the direction of the coolant flow and a fixed 
surface area. The goal of the level-sets core was to find the optimal fuel cross section geometry—that is, 
the minimal fuel volume meeting the multiphysics constraints—with a fixed surface area. The height of 
the fuel piece was an additional free parameter in the optimization. The level-sets core allowed for this 
new geometry representation to be used to cross-validate the cylinder core, the annulus core, and the star 
core solutions.  
 
The major new development of the level-sets core was the ability to transition between geometries of 
different genus number, or to create and destroy holes or internal cooling channels. In the level-sets core, 
the AI optimization had the ability to determine the appropriate number of internal cooling channels and 
how to best distribute the limited surface area between fin-like structures on the outer surface and internal 
cooling channels. 

5.7 TORUS CORE 

The torus core is the final challenge problem in the immediate future. The shape is some continuous 
deformation of the torus—a shape with one hole—but the cross section of the tube of the torus is not a 
trivial geometry. The annulus core can be viewed as one possible candidate for the torus core in which the 
cross section of the tube of the torus is a rectangle. The cone core is a torus core with a tube cross section 
of a trapezoid. The torus pictured in Figure 4 has the cross section of a circle. For the torus core, the cross 
section shape of the tube is permitted to be any 2-dimensional geometrical figure. In other words, the 
optimal solution to the torus core can be described as the optimal geometry with one internal cooling 
channel with rotational symmetry around the coolant flow direction. A representative visualization is 
provided in Figure 11. 

  
Figure 11. A representative visualization of a design candidate for the torus  
core challenge problem (left)), and a cross section view of the tube (right). 

The torus core presents the unique challenge of solving for fuel shape, which optimizes the coolant flow 
dynamics. It was expected that the torus core would greatly optimize the coolant fluid flow around the 
fuel piece. Furthermore, the behavior of the optimization code is expected to be convergent as the number 
of control points was increased. A solution with 10 control points on the surface of the tube should look 
like a rough approximation of a solution with 20 control points. Increasing the number of control points 
beyond a certain (believed to be small) number would yield diminishing returns in performance. 
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5.8 NEAR-FUTURE CHALLENGE PROBLEMS 

In the challenge problems above, a wide variety of constrained and semi-arbitrary geometries (2-
dimensional cross sections) were explored. the near-future challenge lies in exploring fully arbitrary 
geometries in three dimensions. Keeping the current problem definition, objective, and multiphysics 
constraints, the artificial surface area constraint will likely need to be enforced to prevent the divergence 
of the optimal solution into infinitely thin, fractal, structures. However, determining the best, truly 
arbitrary geometry in three dimensions with a fixed surface area (e.g., 6 m2) is extremely significant.  
 
In this challenge problem, two new issues must be addressed:  
 

1. The initialization/scoping study becomes particularly difficult as efforts become focused on a 
large search space of arbitrary geometries in 3 dimensions.  

2. Even the local optimization becomes computationally intensive as the transition is made to 
hundreds or thousands of free parameters which control the geometry.  This is motivating us to 
look at intelligent uses of supercomputers to aid in the optimization of design. 

 
6. FUTURE WORK DIRECTION SUMMARY 

6.1 NEAR-TERM DEVELOPMENT 

The last significant item remaining to close out this preliminary investigation of the framework for AI 
optimization of nuclear design is to solve the arbitrary geometry problem fully in three dimensions with 
restricted surface area. For the problem definition, objective, and multiphysics constraints chosen, this is 
the ultimate challenge. Once it is possible to solve for the optimal 3D geometry for a given surface area, 
then it will be possible to solve for a slight increase and decrease in the surface area. The most 
educational part for nuclear engineering design will come from a continuous visualization of how the 
optimal geometry changes as the amount of available surface area is slowly increased. At some minimal 
surface area, the solution will be a single piece of fuel and will either be a sphere or some small 
modification of a sphere and a fairly large volume. As the available surface area increases, the volume of 
the optimal design will rapidly decrease, and the shape of the design will adapt to maintain criticality and 
improve fuel cooling. With increasing surface area, internal cooling channels will begin to form. The 
shape and number of those cooling channels will provide insights into nuclear systems design. Upon 
further increasing the available surface area, the AI algorithm will be capable of breaking apart the fuel 
into several pieces. At this point, the engineering trade-offs between internal cooling channels and 
independent fuel pieces can be studied. In the long-term development, the AI optimization framework 
will allow for the study of things like optimal geometries for cooling, shape and number of internal 
cooling channels, and the trade-offs of breaking off independent fuel pieces as the problem definition, 
objectives, and multiphysics constraints are modified. 

6.2 MID-TERM DEVELOPMENT 

The goal for mid-term development is to connect the research with advanced manufacturing techniques 
and to develop a design to be built and experimentally tested. This connection is essential for 
demonstrating the relevance of the AI optimization framework for nuclear engineering applications. 
Multiphysics modeling capabilities must be expanded to include thermophysical fuel performance, 
structural mechanics, as well as constraints from advanced manufacturing. The goal of this project will be 
to select a specific nuclear component and quantitatively express the multiphysics constraints on the 
design and the objective of the optimization. Then, the AI optimization framework will be used to 
develop a design. The design will be manufactured and experimentally tested against the predicted 
performance from the simulation software. The performance of the design will be judged in context of the 
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performance of the same component of different design and will be produced with traditional 
manufacturing techniques. 

6.3 LONG-TERM DEVELOPMENT 

The long-term vision for the AI optimization framework of nuclear design is two-fold. First, there is the 
obvious goal of creating a very general framework which to provide reliable designs for particular nuclear 
engineering problems. To achieve this end, the framework must be tested on a variety of different nuclear 
engineering problems using multiphysics simulation of many different phenomena. The second long-term 
goal of this project is for the computational power and AI algorithms developed here to be used to learn 
the meaning of optimal design in nuclear engineering and to learn how designs can be improved to be 
more optimal for particular objective functions with certain multiphysics constraints. Efforts in high-
fidelity computational nuclear engineering have focused on determining the performance of set designs; 
the objective of this work is to harness the power of modern modeling and simulation software to 
understand how to improve those designs.  
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